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Abstract

For temperature modulated differential scanning calorimetry (TMDSC) a simple model, the low pass ®lter, is presented

which allows to see and calculate the in¯uence of heat transfer into the sample on magnitude and phase shift of the modulated

part of the measured heat ¯ow rate and the heat capacity determined from it. A formula is given which enables to correct the

measured magnitude of the periodic heat ¯ow rate function and the calculated heat capacity in dependence on the thermal

resistance and heat capacity of the sample. The correction becomes very important in regions where the heat capacity changes

considerably as in the melting region. The approach is successfully tested with model substances with well-known excess heat

capacity in the transition region. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Temperature modulated differential scanning

calorimetry (TMDSC) offers against normal DSC

additional possibilities to get information about

dynamic (i.e. time-dependent) processes inside the

sample. This is especially of importance in polymer

research, as macromolecules need time to rearrange

at transitions of all kind. Fortunately the time

constant of such processes falls often into the time

window covered by common DSC equipment. The

TMDSC method has already proved its worth in

the case of the glass transition of amorphous

polymers. For this region many papers have been

published, the behavior of the apparatus seems to

be well understood and additional information about

the glass process could be extracted from TMDSC

measurements.

For the melting region the situation is, however,

different and interpretation of respective measure-

ments (which of course have been done) seems,

friendly speaking, to be risky. Too little is known

yet about the artifacts produced by the apparatus itself

and not by the sample in question. This paper aims at

making a contribution to better understand the beha-

vior of the TMDSC in the melting region. This is done

by means of very simple model considerations which

in a second step have been proved experimentally

using samples which certainly do not show time-

dependent processes.

The model of choice is that of electrical analogy,

which has proved its worth in DTA and DSC analysis

since decades [1]. From the physical point of view the

transport of energy (heat ¯ow) is based on the same

type of equations as is the transport of charge (cur-

rent), so the knowledge from theory of electricity (in

Thermochimica Acta 330 (1999) 45±54

0040-6031/99/$ ± see front matter # 1999 Elsevier Science B.V. All rights reserved.

PII: S 0 0 4 0 - 6 0 3 1 ( 9 9 ) 0 0 0 3 9 - 8



particular alternating current (a.c.) theory) can easily

be transferred to heat transport problems. The advan-

tage of looking on electrical networks rather than on

often complex heat conducting solid objects is that

there are a lot of powerful tools from electrical line

network and transfer theory available and the wheel

must not be invented once more.

The `̀ dictionary'' of the two languages of the same

transport physics reads as follows:

Heat transport Charge transport

Heat Q Charge Q

Heat flow rate � Current i

Temperature T Voltage (against some zero

reference) U

Heat resistance Rth Resistance R

Heat conductivity � Conductance L

Heat capacity Cp Capacitance C

The DSC is built from different mechanical parts,

which in principal have a certain heat conductivity and

a heat capacity each. A contact area between different

parts acts as an additional heat resistance. In addition

there is often sophisticated electronics which ampli-

®es the voltages from the sensors resulting in the

measured signal transferred to the computer. This

way a DSC, no matter how complicated it is, can

be dissected into a network of simple mechanical

elements ± which can be translated into an electrical

network of capacitances and resistors, see e.g. [1,2] ±

and the hopefully linear electronics. There is no limit

for the number of elements in such a network. To get

the properties of it, a system of almost the same

number of linear differential equations must be solved

which in principal is possible, even for complex

modern equipment, thanks to modern computers.

Nevertheless we shall, in what follows, restrict our-

selves to very simple models which are absolutely

suf®cient to learn about the principle behind heat

transfer to the sample in case of modulated DSC.

In this case the network describing the DSC in

question has one input (the temperature program)

and one output (the heat ¯ow rate into the sample

calculated from the differential temperature or directly

measured as differential heat ¯ow rate). It is often

suf®cient to look at the so-called `̀ transfer function''

(a complex function in frequency space, see below) to

describe the `̀ black box'' containing the network in

question. The transfer function is closely connected

with the `̀ step response'' or `̀ impulse response''

functions (in time±space) via Fourier transform. It

will go beyond the scope of this paper to derive all

details of the features of these functions, the interested

reader is referred to textbooks of transfer theory or,

more basically, of a.c. electricity physics.

2. Simple models for DSCs

2.1. The low pass filter

The easiest model for, say, a sample inside the

sample pan which has a certain thermal resistance

Rth and a certain heat capacity Cp is a RC element

(Fig. 1). The input voltage Ui of the electrical circuit

stands for the temperature of the pan support TS and

the output voltage Uo stands for the (mean) tempera-

ture of the sample itself Tsample. The transfer function

P(!) is de®ned as the quotient of the output function

Uo(!) over the input function Ui(!) which for the

network of Fig. 1 can easily be found from the

respective resistances R and RC (the a.c. resistance

of C):

P�!� � Uo�!�
Ui�!� �

RC

R� RC

� 1=i!C

R� 1=i!C
� 1

1� i!RC

� 1

1� !2R2C2
ÿ i

!RC

1� !2R2C2
: (1)

This is the complex transfer function of the elec-

trical circuit. The transfer function of the thermal

behavior of the sample is got by changing R to Rth,

C to Cp and the voltages to the respective tempera-

tures. For DSC the transfer function plays the role of a

correction factor for heat ¯ow rate and Cp function,

Fig. 1. Circuit representing a low pass filter.
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respectively. This way we get the magnitude (ampli-

tude)

jP�!�j �
�������������������������������������������������
�Re P�!��2 � �Im P�!��2

q
� 1��������������������������

1� !2 R2
th C2

p

q � Tsample

TS

���� ����: (2)

and the phase angle of the transfer function in terms of

thermal quantities:

arg�P�!�� � tanÿ1 Im P�!�
Re P�!�

� tanÿ1j ÿ !RthCpj � ��!�: (3)

Having the fact in mind that the heat ¯ow rate signal

can only be behind the temperature signal in time

because it is caused by the latter, we can neglect the

sign in Eq. (3) and de®ne the phase shift of the

periodic heat ¯ow rate function in TMDSCs as always

positive.

As an example in Fig. 2 the magnitude of such a

sample transfer function is plotted for three different

cases representing the respective values of realistic

samples: (a) a 7.8 mg sapphire disc, (b) a 9 mg poly-

styrene disc and (c) a 280 mg copper disk, respec-

tively. Fig. 3 represents the log±log plot (the so-called

`̀ Bode plot'') of this transfer function. The product

RthCp�� has the dimension of a time which deter-

mines the temperature relaxation behavior of the

sample in its pan. It can be determined from the

measured transfer function (see Eqs. (2) and (4)),

namely by extrapolating the asymptotes from very

low (a horizontal line) and very high frequencies (a

line with slope�ÿ1) in the Bode plot (see Fig. 3). The

intersection point !0 (the `̀ corner frequency'' of the

low pass ®lter) gives the reciprocal � and thus even the

effective Rth for known heat capacity of the sample Cp.

From Eq. (2) we get

jTsamplej � 1�������������������������
1� !2R2

thC2
p

q jTSj: (4)

With other words the (mean) sample temperature

magnitude (amplitude) is always lower than that of the

pan support which is the measured (and controlled)

quantity. If we consider the TMDSC itself (i.e. the

temperature probe) well calibrated, Eq. (4) enables us

to correct our measured results due to the limited heat

transport into the respective sample.

It is clear that the product of Rth and Cp determines

the transfer behavior (see Figs. 2 and 3). Both the

polystyrene sample with low heat capacity but high

heat resistance and the copper sample with low heat

resistance but high heat capacity show a fast decreas-

ing magnitude of the transfer function with !, whereas

that of the sapphire sample does not change so much

because both Rth and Cp are rather small.

Let us try to apply our knowledge from this simple

model to heat capacity measurement with TMDSC.

The oscillating part of the temperature program

Fig. 2. Magnitude of the transfer function of the low pass filter

model for: (a) a sapphire disc (Rth�0.04 K mWÿ1, C�7.2 mJ Kÿ1,

��0.30 s); (b) a polystyrene disc (Rth�0.18 K mWÿ1, C�12.5 mJ

Kÿ1, ��2.25 s); (c) a copper disc (Rth�0.033 K mWÿ1, C�110 mJ

Kÿ1, ��3.63 s) in usual sample pans.

Fig. 3. Bode plot (magnitude) of the transfer function of Fig. 2

with construction of the corner frequencies. The dashed line

indicate the slope of ÿ1.
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reads e.g.

~TS�t� � TA sin!t; (5)

where TA � j~TSj is the temperature amplitude of the

sample thermometer which often controls the tem-

perature program. Then, for very symmetrical and

ideal thermal conditions, the measured differential

heat ¯ow rate (i.e. the heat ¯ow rate into the sample

with heat capacity Cp) is simply given by

~��t��Cp

d~T

dt
� Cp � TA � ! � cos!t � �A cos!t;

(6)

from which the heat capacity of the sample is calcu-

lated:

Cp � �A

TA � ! : (7)

But this simple formula is only true for frequencies

low enough to allow the sample temperature to follow

the program temperature totally, otherwise the (always

lower) sample temperature amplitude ± instead of the

program temperature Eq. (5) ± must be used in

Eqs. (6) and (7) and we get with Eq. (4):

Cp � �A

TA � !
��������������������������
1� !2 R2

th C2
p

q
: (8a)

Strictly speaking the Cp's on both sides are not the

same because of unavoidable asymmetries between

reference and sample side. Both are `̀ apparent'' heat

capacities as `̀ seen'' from the thermometer on the one

hand and from the bottom of the sample pan on the

other hand. However, the difference is not very large

and within the framework of this model discussion we

decide both quantities to render the sample heat

capacity, taking ideal symmetry of the DSC into

account. This way we may solve Eq. (8a) for Cp:

Cp � �A

!
�����������������������
T2

A ÿ R2
th�

2
A

q : (8b)

The correction term (the square root in Eq. (8a))

can be neglected if !2R2
thC2

p�1. To decide on this, we

have to know something about the apparent thermal

resistance Rth, which includes both the heat transfer to

and the heat conduction inside the sample. The appar-

ent thermal resistance can be determined from the

ascending slope (d�/dT�1/Rth) of a peak from a ®rst

order transition [2] of a sample with the same thermal

properties which can be measured in normal DSC

mode, or ± with TMDSC ± from the heat ¯ow rate

amplitude during phase transition. To see the latter, we

rearrange Eq. (8a):

�A � TA
! � Cp��������������������������

1� !2 R2
th C2

p

q : (9)

During a ®rst order phase transition the apparent

(excess) heat capacity of the sample becomes in®nite

and the number 1 in the denominator can be neglected

against the second term and we get

�A � TA

Rth

: (10)

This is the maximum possible magnitude of the

periodic heat ¯ow rate for a given temperature ampli-

tude in a TMDSC. This case may occur during ®rst

order phase transitions (see Section 3.1).

For those who are in need of the phase shift for

evaluation as well, we stress that there is even a huge

in¯uence of the sample properties Rth and Cp on the

measured phase shift which can be corrected in a

similar way by using Eq. (3). This correction is

straightforward beside the problems arising from

the periodicity of the tanÿ1(arc tan) function.

What do we learn from these considerations for

TMDSC measurements in the phase transition region:

as the apparent (effective) heat capacity changes

considerably during phase transitions, the heat ¯ow

rate magnitude is not proportional to the heat capacity

any more. Within the framework of this simple model,

and taking total symmetry of the TMDSC for granted,

formula Eq. (9) is valid. The true excess heat capacity

of, say, polymer melting may be calculated from the

measured heat ¯ow rate magnitude by means of

Eq. (8a) or Eq. (8b). For narrow ®rst order transitions

this is meaningless, as the magnitude does not contain

any information from the heat capacity anymore. Even

outside the melting region where Cp is almost con-

stant, the correction factor is usually different from

unity and should be determined experimentally.

2.2. Low pass filter networks

The low pass ®lter model is even helpful to under-

stand the properties of the total equipment i.e. DSC
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and sample due to heat transport in¯uence on the

measurement. In a ®rst approximation the heat is

transported along a one-dimensional pathway which

can be modeled by a series of RC elements. Say, for

instance for the sample side, one from the oven to the

sample (or control) thermometer, one from that ther-

mometer to the sample support (the pan) and one from

there to the inner side of the sample. All these RC

elements have different apparent heat resistances and

heat capacities, which of course are unknown but (for

the apparatus part) almost constant. They can be

determined from the measured transfer function, if

necessary, as will be shown later.

From transfer theory it is well known that for

transfer elements connected in series the total transfer

function is the product of those from the elements. In

other words, the amplitudes have to be multiplied,

whereas the phases connect additive. This way the

total correction, concerning the heat transfer, of the

heat ¯ow rate function can be deduced from Eq. (9)

with different ��RthCp for the RC elements in question

�A � TA!Cp

Yn

i�1

1������������������
1� !2�2

i

p
or log

�A

TA!Cp

�
Xn

i�1

log
1������������������

1� !2�2
i

p : (11)

If we measure the heat ¯ow rate magnitude �A

depending on! for different heat capacities Cp and plot

log(�A/(TA ! Cp)) against log ! (`̀ Bode plot'') we get

curves which starts horizontally and bends more and

more down. If a sample is chosen with low heat capacity

and low thermal resistance its transfer function will not

in¯uence the measurements within the available fre-

quencyregionverymuchandwegetthetransferfunction

of theapparatus itself.Fromtheslopeof theasymptote in

thedouble logarithmic plot it ispossible todetermine the

number of different effective RC elements. One RC

element will give a slope of ÿ1 at higher frequencies

(see Fig. 3), two RC elements in series will give a

slope of ÿ2 and so on. Determining the intersections

of the asymptotes (as in Fig. 3), starting at the lowest

frequencies, and subtracting the respective curve from

the measured one will give all respective time constants

for those who are interested.

For practice it is suf®cient to take the total transfer

function for correction of apparative heat transfer

in¯uences on the measured signal. This function itself,

if determined correct, should not depend on sample

parameters. The sample behavior can then be easily

included by adding both Bode plots. Of course the

respective apparative correction must be done ®rst if

information from sample in¯uences must be deduced.

As an simple example for modeling the total

TMDSC, the simplest possible network of Fig. 4

has been constructed. The transfer function for this

model is again de®ned as the quotient of the output

voltage (i.e. the �T signal of the DSC) over the input

voltage (i.e. the temperature of the oven). It can be

calculated straightforward in a similar way as that of

the low pass ®lter (Section 2.1) using the laws of

electricity in particular Kirchhoff's laws (see [2,3]):

Uo

Ui
� 1

1� i!R1C1

ÿ 1

1� i!R1C1 � !R1 CS=�!RSCS ÿ i� :

(12)

This is the difference between the transfer functions

of a single low pass and that of two low pass in series

representing the reference side and the sample side of

a differential calorimeter, respectively. The quantities

R1 and C1 characterize the apparent thermal resistance

and the apparent heat capacity of the heat ¯ow path-

way from the oven to the pans, which are thought to be

the same on sample and reference side. RS and CS

symbolize similar quantities for the sample itself. The

(normalized) magnitude of this function (Eq. (12)) is

calculated with MAPLE mathematics software and

plotted in Fig. 5 after inserting parameters chosen

to give the best ®t to real measurements with a

Fig. 4. Circuit representing the simplest model for a DSC with

sample.
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sapphire disc. The typical low pass ®lter behavior is

visible even for this more complex network. The slope

for higher frequencies is aboutÿ2 in this `̀ Bode plot''.

The intersection point of the asymptotes (corner fre-

quency) is !0�0.45 rad sÿ1 which yields a time con-

stant of 2.2 s which ®ts with the chosen parameters

R1C1�0.115 K mWÿ1�20 J Kÿ1�2.3 s. The corner

frequency which belongs to the low pass element

characterizing the sample in this model

(!0�3.45 rad sÿ1 for the parameters used: RSCS�
0.29 s) is got if we extrapolate the asymptote at large

frequencies.

2.3. Measurements supporting the model

calculations

To test the model calculations measurements with a

real TMDSC (DSC7, Perkin-Elmer, with self-made

modulation possibility1) and evaluation with phase

sensitive recti®cation method [4] were done, using

three different samples (the same as used for the

calculations of Fig. 3). In Fig. 6 the measured mag-

nitude of the total transfer function of calorimeter with

these samples at different frequencies is given in the

form of a `̀ Bode plot''. In this case the transfer

function P(!) is de®ned by the quotient of the mea-

sured heat capacity (the `̀ output'' of the measurement)

and the true heat capacity (the `̀ input'' of the mea-

surement) of the sample. The former is calculated

using uncorrected Eq. (7), the latter is taken from

literature. As can be seen, the overall shape of the

curves looks like the calculated one (Fig. 5). Even the

in¯uence of the different samples on the curvature at

frequencies !>0.1 rad sÿ1 is clearly visible. This is

clear from the different sample low pass behavior (see

Fig. 3), which comes in at those frequencies and the

fact that the overall `̀ Bode plot'' is the sum of the

`̀ Bode plots'' of the TMDSC and the sample in

question.

As it looks like this TMDSC (though a power

compensated one) seems to follow the very simple

low pass ®lter model rather well. Obviously the power

compensation electronics has no essential in¯uence

within the frequency window used. This makes us

optimistic for the validity of the following considera-

tions.

2.4. Remark on the damping effect of temperature

waves in solids

In heat conducting materials a periodic temperature

change on one side of the sample generates a tem-

perature wave which proceeds through the sample in

time. This wave is, however, very damped, in other

words the amplitude decreases exponentially and the

effective penetration length of the temperature wave

(i.e. the distance where the amplitude is reduced to 1/e,

Fig. 5. Bode plot of magnitude and phase of the transfer function

of the DSC model (Fig. 4) (with thermal quantities: R1�0.115 K

mWÿ1, C1�20 mJ Kÿ1, �1�2.3 s, RS�0.04 K mWÿ1, CS�7.2 mJ

Kÿ1, �S�0.30 s).

Fig. 6. Bode plot (magnitude) of the transfer function (�A/

(TA ! Cp)) of a DSC7 in isothermal modulation mode

(TA�23 mK) measured at eight frequencies with three different

samples (for properties see Fig. 2).

1By adding a sinusoidal voltage from a precision function
generator to the program voltage of the electronic controller.
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see textbooks of solid state physics) reads

� �
������
2�

!

r
with � � �

�cp

; (13)

where � is the thermal diffusivity, � the thermal

conductivity, � the density and cp is the speci®c heat

capacity. For the frequencies of TMDSC this length is

in cm range for metals like copper, but below 1 mm for

polymers. The consequence of this low penetration

length for our considerations is that for the modulated

part of the temperature we have an exponential

temperature decrease inside the sample. In other

words, the real amplitude decreases exponentially

from the contact surface towards the center of the

sample. And this is already an essential effect for

organic or polymer samples of, say, half a millimeter

thickness. We have to draw conclusion that the sample

temperature amplitude got from the correction for-

mula of our simple low pass ®lter model (Eq. (4)) is

in fact an exponential average value, which for

thicker samples represent the reality only very

roughly. The same is true for the subsequent calculated

heat capacity.

3. TMDSC behavior in the phase transition region

In what follows different measurements with our

TMDSC characterized above are presented. To avoid

unnecessary complications we restrict ourselves to the

heat ¯ow rate functions as evaluated from the mea-

sured heat ¯ow rate without any correction. The aim of

this section is to deduce the in¯uence of the sample on

the measured quantities in the transition region in

principle and see how the latter are falsi®ed by the

low pass ®lter behavior.

3.1. First order phase transition of a pure substance

For ®rst order phase transitions the enthalpy passes

through a step-like change at the ®xed transition

temperature. From that it follows that the heat capacity

(the derivative of the enthalpy) becomes Dirac shaped

(i.e. in®nite) at transition temperature. From the con-

siderations in Section 2.1, Eq. (10) should be valid in

the transition region, in other words, within the region

of the melting peak the magnitude of the periodic heat

¯ow rate should increase to the maximum value

(saturation) which is determined by the thermal resis-

tance and the temperature amplitude. As mentioned

before, this way the apparent thermal resistance of the

sample can be determined: Rth�TA/�A. From Eq. (3)

the phase shift coming from the sample low pass ®lter

should be �/2. In the other low pass ®lter characteriz-

ing the heat ¯ow pathway in the DSC the big heat ¯ow

into the sample causes another �/2 phase shift.

Remembering that phases behave additive for serial

low pass ®lters, the total phase should jump by � in the

melting region.

In Figs. 7 and 8 the experimental results for the

melting of indium for two different temperature

amplitudes are given. The amplitudes are chosen that

way to give a temperature program in only heating or

heating±cooling mode, respectively. The behavior of

the magnitude of the periodic heat ¯ow rate as well as

the phase shift is as expected. The effective thermal

resistance of that indium sample is calculated from

Eq. (10) Rth�48 K Wÿ1 which ®ts to the value

35 K Wÿ1 got from the slope of the melting peak

from a conventional DSC run, which is re¯ected in the

underlying curve even got from TMDSC measure-

ments in the usual way. For precise evaluation we have

to have in mind that again the program temperature

amplitude, used for calculation, is somewhat higher

than the amplitude at the bottom of the pan. The time

constant of the sample (outside the melting region) can

be calculated from the thermal resistance and the heat

capacity of the sample: ��RthCp�0.2 s which

together with the used frequency !�0.39 rad sÿ1

Fig. 7. TMDSC run in only heating mode of indium in the melting

region (m�6.5 mg, !�0.39 rad sÿ1, period�16 s, TA�2.3 mK,

underlying heating rate 0.1 K minÿ1).
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results in a value of 0.006 for the second term of the

square root in the correction formula Eq. (4) which

can be neglected against 1, so outside the melting

region there is no correction needed.

3.2. Second order phase transitions

Second order phase transitions show no step-like

enthalpy change at a certain ®xed temperature but a

continuous increase within a de®nite temperature

interval. The respective derivative, the heat capacity

function, looks often like a capital Greek lambda (�)

i.e. increases with temperature with increasing slope

and drops suddenly down to the low temperature value

again. The temperature at maximum is taken as the

transition temperature.

Such a Cp anomaly (clearly without any relaxation

or other time-dependent processes) is very suitable to

test the TMDSC and our formulae.

In Fig. 9 the results from measurements of the

second order transition of NaNO3 at 2748C are shown.

The �-transition is clearly visible both in the under-

lying and in the magnitude curve of the heat ¯ow rate.

As the heat capacity does not change very much (about

a factor of 2 within the ®rst 90% of the peak) and the

thermal resistance seems to be rather low, the denomi-

nator of Eq. (9) equals 1 and can be omitted in this

case. This is one example, where it is not necessary to

correct for sample low pass behavior, at least for our

special TMDSC and this transition. The magnitude of

the modulated part of the signal is, even during the

transition, proportional to the heat capacity.

The phase shift is rather small during the second

order transition (Fig. 9) and obviously proportional to

the heat capacity as well. This is in accordance with

Eq. (3), as for small heat capacity changes, the tanÿ1

function can be replaced by its argument.

To sum up, for second order phase transitions and

other events with rather small heat capacity changes

the underlying magnitude and phase shift curves,

respectively, re¯ect the Cp(T) function and may be

used to determine it. Determination from the magni-

tude curve is, however, most precise. An eventual

correction, which is due to low pass ®lter behavior

of the sample itself, can be done using Eq. (8a) or

Eq. (8b). There is no additional information in the

phase shift curve.

3.3. Melting with continuous enthalpy function

Looking for a system with a broad melting region,

as known from polymers, but without any measurable

time dependence, we chose an impure alkane

(C33H68). From alkanes it is well known that melting

is an almost instantaneous process. Even the thermo-

dynamics of alkane mixtures (as in an impure alkane)

is well known, they behave eutectic if the chain length

is not to narrow. Consequently, the melting peak of

such an impure alkane should start immediately after

the eutectic temperature and end somewhat below the

Fig. 8. TMDSC run in heating±cooling mode of indium in the

melting region (m�6.5 mg, !�0.39 rad sÿ1, period�16 s, TA�
9.2 mK, underlying heating rate 0.1 K minÿ1).

Fig. 9. TMDSC run in heating±cooling mode of NaNO3 in the

transition region (m�4.8 mg, !�0.39 rad sÿ1, period�16 s,

TA�9.2 mK, underlying heating rate 0.1 K minÿ1).
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melting temperature of the main component (C33H68).

The shape of the heat capacity function is again the

derivative of the enthalpy function which can be

calculated with well established thermodynamic for-

mulas. For our purposes only the shape of the Cp(T)

function is of interest which again is �-shaped and has

a width of about 3 K. The exact course of it depends,

however, on the components of the mixture or, in our

case, the impurities in question, but this is not of

interest here.

In Fig. 10 the underlying heat ¯ow rate curve as

well as the magnitude and the phase shift of the

modulated part of the respective TMDSC signal is

plotted. Comparing the underlying heat ¯ow rate

curve with the magnitude curve we see that the

curvature of the magnitude curve is signi®cantly lower

than that of the underlying curve. Obviously there is an

increasing `̀ damping'' of the heat ¯ow magnitude

with increasing peak height. The reason for that is

1. the larger apparent thermal resistance of the

sample Rth�60 K Wÿ1 and

2. the large increase of excess heat capacity within the

peak (more than 50 times!).

The time constant outside the melting region is

��RthCp�0.3 s, a value which together with the fre-

quency !�0.39 rad sÿ1 yield a value of 0.1 for the

second term under the square root (Eqs. (4) and (8a)),

which cannot be neglected for precise measurements.

Its value increases more and more along the melting

peak and gets larger than 5 at peak maximum. From

this it follows that we have to take a rapid increasing

correction factor into account and at peak maximum

the measured magnitude of the periodic heat flow rate

must be multiplied with a factor of about 3 to give the

exact Cp function. This can be seen in Fig. 10, the

magnitude curve, compared with the underlying

curve, becomes more and more flat approaching the

maximum of the melting peak, because of the increas-

ing denominator. Looking at the first order solid±solid

transition peak at 678C ± where our considerations of

Section 3.1 are valid ± we can see the maximum

possible magnitude of the periodic heat flow rate

for this sample at 0.38 mW. Obviously the magnitude

at the maximum of the melting region (0.3 mW) is

approaching this limit. If we would include the cor-

rection factor we would get a magnitude curve looking

like the underlying curve in the melting region, both of

them being almost proportional to the heat capacity

curve.

To test the validity of our considerations further-

more we have done quasi-isothermal measurements

on the same sample with the same temperature ampli-

tude. In Fig. 11 these results have been added to the

magnitude curve of Fig. 10 for comparison. In the

melting region and outside the transitions the measur-

ing points coincide with the magnitude curve of the

scanning mode, this result supports

1. our assumption that the melting curve can be

described by an excess heat capacity function and

Fig. 10. TMDSC run in heating±cooling mode of an impure

C33H68 in the melting region (m�2.25 mg, !�0.16 rad sÿ1,

period�40 s, TA�23 mK, underlying heating rate 0.1 K minÿ1).

Fig. 11. Magnitude curve from Fig. 10 together with results from

measurements in quasi-isothermal mode with the same temperature

amplitude.
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2. the idea of low pass filter behavior to be even valid

for the quasi-isothermal mode of modulation.

The one measuring point within the first order solid±

solid phase transition reproduce the static heat capa-

city of the sample (the base line) at that temperature.

Even that result is as expected for `̀ sharp'' first order

phase transitions.

4. Conclusions

The experiments have shown that the simple low

pass ®lter model is a suitable approach to describe the

TMDSC in a region where the apparent heat capacity

(or the thermal resistance) changes are considerable.

As a consequence the sample temperature modulation

amplitude is a function of the heat capacity of the

sample as well as that of the apparent thermal resis-

tance. The measured magnitude of the modulated part

of the heat ¯ow rate is never strictly proportional to the

heat capacity function but a correction must be

included. This correction can be approximated by

�A;corr � �A;meas �
�������������������������
1� !2R2

thC2
p

q
: (14)

Normally Cp is the desired result from TMDSC

measurements and Eq. (8a) or Eq. (8b) is used to

calculate the corrected Cp directly from the measured

heat ¯ow rate magnitude. In this case the corrected

heat ¯ow rate itself is of no interest. However, Rth and

Cp are not known exactly, but it is possible to get some

approximate values for the sample in question. For

Cp(T) in Eqs. (14) and (8a) the underlying heat ¯ow

rate divided by the (underlying) heating rate can be

used as an zeroth approximation and Rth can be

determined from the slope of a ®rst order transition

of the sample in question. If such a thing does not exist

(e.g. for polymers) one could take the respective result

from measurements with substances of similar thermal

conductivity properties. This way pure alkanes may

serve as substitute for, say, polyethylene. Of course it

is also possible to determine the product RthCp experi-

mentally for a certain polymer by comparing the

measured heat capacity (outside of transition regions)

for different frequencies ! (as many as possible) with

the value from literature (e.g. from the ATHAS data

bank [5]) and making a least square ®t by means of the

correction function. It is clear that such a correction is

only a very approximate one, but such a correction is

in every case better than to calculate an excess heat

capacity in a transition region without any correction

of the measured magnitude of the periodic heat ¯ow

rate.

Knowing the in¯uence of the heat transfer on

TMDSC results enables the scientist to decide whether

there is some additional (time-dependent) process in

the sample or whether the measurements mirrors only

the pure excess heat capacity in the transition region.

Examples will be presented in the second part of this

paper [6]

Last but not the least it should be mentioned that

similar considerations can be done for the in¯uence of

the sample on phase shift in the melting region. The

calculations and corrections are, however, not so easy

but the low pass ®lter model is successful even in this

case [7].
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